
Responsive Web Design
birds of feather

Approaches to Mobile Development

1. “No Mobile” Approach
2. Native Mobile Applications
3. Mobile Websites
4. Responsive (universal) design

“No Mobile” Approach
● Website that does not offer a tailored mobile experience

(either app or website)
● Can still be viewable on most devices, but not

particularly usable (Having to zoom in/out and pan
around = BAD USER EXPERIENCE)

Not always an issue of ignorance, but budget or other
shortcomings

Old style Mobile Websites
● “Browser sniffing”

○ –Method that identifies which browser and operating system you are
using

● Requires maintaining a list of browsers and operating
systems

● Features/content left out for mobile users
○ Might make sense, but too often due to assumptions instead of user

studies
● If redirects are not properly set up, sharing links can be

problematic
● Maintaining several code bases

Native Mobile Applications

● Barrier to entry
○ – Device and even OS version

● Separation of content and features
● Costly

What is good about Mobile Websites and Native Apps

● Both offer experience tailored to mobile devices
● Native applications can take advantage of advanced

device capabilities

Web browsers are catching up!

RWD
Proposed by Ethan Marcotte on A List Apart in May 2010
http://www.alistapart.com/articles/responsive-web-design/

One website for all devices!

Optimized for different contexts using:
● Fluid grids
● Flexible media
● CSS Media Queries

http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/

Grid Systems
A way of organizing different pieces of information along
vertical and horizontal axes.

Fluid grid = width of boxes is
defined in percentage rather
than fixed units (pixels, em)

- Can grow or shrink as the screen width changes
- Allows for utilizing all available space
- Avoids issue of horizontal scrolling

Flexible Media
Similar concept to fluid grids, but applied to images and
movies so dimensions of media can change depending on
screen size.
img, object {
 max-width: 100%;
}

Can result in problems in older browsers that don’t support
max-width (Internet Explorer 7)

○ Set width to 100%

Image considerations
● If images are going to be viewed at small sizes, no point

in serving large resolution images?
● Existing images look blurry on displays with high pixel

density
● May serve different images based on media queries?

Media Queries
● Part of CSS3 specification
● Extends existing media type functionality that allowed

style sheets for print, screen, etc.
● Gives more granular control as to when different CSS

rules are applied
○ Based on media features such as screen width/height, screen

orientation, pixel density, etc…

Media Query Examples
@media screen and (min-width: 650px) and (max-width:
960px) {...}

@media (min-width:800px) and (max-width:1200px) and
(orientation:portrait) { ... }

@media screen and (-webkit-device-pixel-ratio: 1.5),
screen and (resolution: 144dpi) { ... }

Breakpoints
● Breakpoints are defined resolution points (typically

width) specified in media queries at which different CSS
styles are applied.

● Breakpoints example:
○ Below 650 (small screen)
○ 650-960 (tablet)
○ Above 960 (desktop)

● Should be chosen based on
your content rather than
known resolutions of popular
devices

Media Query Support
● Mobile browsers

○ –iOS Safari (3.2+)
○ –Android Browser (2.1+)

● Desktop browsers
○ –Internet Explorer (9+)
○ –Firefox (3.5+)
○ –Chrome (4+)
○ –Safari (4+)

Full list at http://caniuse.com/css-mediaqueries

http://caniuse.com/css-mediaqueries

How To Handle Lack of Media Query Support

● Mobile-first approach for other browsers
○ Default CSS = single column layout
○ Introduce additional complexity inside media queries (unsupported

browsers will just ignore this)
● Respond.js - solid but limiting (no support for device-width,

device-height,orientation, aspect-ratio, color, monochrome or resolution)
● CSS3-MediaQueries-js - more supported features but slow to load
● Conditional IE Style Sheets

○ Your media queries are simple enough to include in a single style
sheet;

○ You do not have to support more legacy desktop browsers.

https://github.com/scottjehl/Respond
https://code.google.com/p/css3-mediaqueries-js/
https://code.google.com/p/css3-mediaqueries-js/

Advantages of RWD
● one content site to manage

○ content is always current
○ less Maintenance

● development costs are low(er)
● adjusts to different width/sizes
● device OS independent

○ Smartphone, Tablet, iPhone, Android, etc
● plays well with current initiatives on campus (Drupal,

need for short development times)
● clear need for an alternative to app development

Drupal and RWD
Options to start with:
● Use existing responsive theme (the most common

approach)
○ Bootstrap (Stanford)
○ Boilerplate
○ Responsive Skeleton
○ Omega
○ Zen (mobile first)

● Develop your own

http://twitter.github.io/bootstrap/
https://openframework.stanford.edu/
http://twitter.github.io/bootstrap/
https://drupal.org/project/boilerplate
https://drupal.org/project/boilerplate
https://drupal.org/project/responsive_skeleton
https://drupal.org/project/responsive_skeleton
https://drupal.org/project/omega
https://drupal.org/project/omega
https://drupal.org/project/zen
https://drupal.org/project/zen

Custom Themes

Compare

Existing Themes
Pros Cons

Standardization Size

Support Complexity

Communal Accountability Learning Curve

Best Practices Assumptions

Pros Cons

Small Footprint Lack of standards

Maximum Control Lack of Support

Project Specificity Lack of Flexibility

Quick Implementation Need for Accountability

Drupal Modules (for handling images)

● Adaptive Image
Handles images by serving device appropriate versions from your site’s image fields. It’s also very
easy to configure, all you need to do is add the adaptive effect to an image style and specify some
breakpoints.

● Picture
Uses the proposed (but not implemented) HTML5 picture element and delivers alternate image
sources depending on the device capabilities. This will prevent devices operating on bandwidth-
challenged networks from downloading large images.

● Retina Images
Solves this problem for Drupal by adding an option to the image effects that come with Drupal core to
make them output high resolution images that look good on these Retina displays

https://drupal.org/project/adaptive_image
https://drupal.org/project/adaptive_image
http://drupal.org/project/picture
http://drupal.org/project/picture
http://drupal.org/project/retina_images
http://drupal.org/project/retina_images

Drupal Modules
● FitVids
Handles videos for your fluid layout so you don't have to worry about that. You
know, when you embed YouTube or Vimeo videos they come with a specific
size. Well this takes care of that and makes them resize automatically based on
the container they are in.

● Tinynav
Implements the tinynav.js jQuery library to transform your menu into a select
dropdown on small devices.

http://drupal.org/project/fitvids
http://drupal.org/project/fitvids
http://drupal.org/project/tinynav
http://drupal.org/project/tinynav

